
Download free eBooks at bookboon.com

Go Faster!

122

Condensed Columns

8 Condensed Columns

8.1 Introduction

In this chapter, I want to look at another extremely important reinement to the basic TR model, condensed columns.

Condensed columns can be thought of as a highly TR-speciic approach to data compression (see Chapter 2)—though

there’s much more to the concept than that, as we’ll soon see. Unlike the reinement discussed in the previous chapter,

which afected the Record Reconstruction Table, condensed columns afect the Field Values Table (and possibly the Record

Reconstruction Table as well), as we’ll also soon see.

I’ll use a new example to illustrate the basic idea. Consider the parts relation P depicted in Fig. 8.1.1 Note that each part

has a part number (P#), unique to that part; a part name (PNAME), not necessarily unique; a color (COLOR); a weight

(WEIGHT); and a location (CITY). he sole key is {P#}. For deiniteness, let’s assume that attributes P#, PNAME, COLOR,

WEIGHT, and CITY are deined over types P#, NAME, CHAR, NUMERIC, and CHAR again, respectively, where P# and

NAME are user-deined types and CHAR and NUMERIC are system-deined types.

Fig. 8.1: The parts relation P

Fig. 8.2 shows a possible ile corresponding to the relation of Fig. 8.1; Fig. 8.3 shows the corresponding Field Values Table;

and Fig. 8.4 shows a corresponding Record Reconstruction Table, based on the following permutations:

•	 P# — PNAME — COLOR — WEIGHT — CITY : 1, 2, 3, 4, 5, 6

•	 PNAME — COLOR — WEIGHT — CITY — P# : 2, 5, 6, 1, 3, 4

•	 COLOR — WEIGHT — CITY — P# — PNAME : 5, 3, 2, 1, 4, 6

•	 WEIGHT — CITY - P# — PNAME — COLOR : 1, 5, 4, 3, 2, 6

•	 CITY — P# — PNAME — COLOR — WEIGHT : 1, 4, 6, 3, 2, 5

As an aside, let me remind you that any attribute appearing to the right of attribute P# in any of the foregoing attribute

lists can safely be ignored, because {P#} is a key (see Chapter 7, Section 7.6).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

123

Condensed Columns

Fig. 8.2: File corresponding to the parts relation of Fig. 8.1

Fig. 8.3: Field Values Table corresponding to the ile of Fig. 8.2

Fig. 8.4: Record Reconstruction Table corresponding to the ile of Fig. 8.2

8.2 Condensing the Field Values Table

Observe now that the Field Values Table of Fig. 8.3 involves a considerable amount of redundancy—for example, the

city name London appears three times, the weight 17.0 appears twice, and so on. “Condensing” the columns of that table

simply eliminates that redundancy. he result is thus a table in which each column contains just the pertinent distinct

values, as shown in Fig. 8.5.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

124

Condensed Columns

Fig. 8.5: Condensed version of the Field Values Table of Fig. 8.3

Numerous points arise immediately from this simple idea of condensing columns. Here are some of them:

•	 he condensed table is no longer really a table as such—I mean it isn’t just a simple two-dimensional

array any more—because certain cells are missing; for example, there’s no [5,5] cell. Internally, therefore,

the condensed table will probably be implemented as a set of vectors or chained lists, one such for each

column, not as a two-dimensional array (you might recall that I mentioned this point before, in Chapter

6, when I was discussing INSERT operations, but now we see another good reason for adopting such an

implementation). For pedagogic purposes, however, it’s convenient to keep on referring to the condensed

version of the table as a table (and showing it in a kind of semitabular form, as in Fig. 8.5), and so I will.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Go Faster!

125

Condensed Columns

•	 here’s no point in condensing the part number column, because part numbers are unique (meaning no

part number ever appears more than once in the column anyway). What’s more, there might not be much

point in condensing the part name column either, if part names are “almost unique”; for the sake of the

example, however, I have shown that column as condensed in Fig. 8.5. As you can see, therefore, it’s perfectly

legitimate, and indeed desirable, to apply the condensing process selectively.

•	 Field values in condensed columns are efectively shared across records of the parts ile (I touched on this

point in Chapter 6 as well). For example, the city name London in cell [1,5] is shared by three part records:

namely, those for parts P1, P4, and P6.

•	 Certain relational operations, especially join, now have the potential to run faster than before (essentially

because there’s less data to process). Note: Joins are fast in TR anyway because Field Values Table columns

are kept in sorted order; as I pointed out in Section 4.4, this fact means we can do a sort/merge join without

having to do the run-time sort. What’s more, there’s an even more important reason why joins are fast in TR,

which we’ll get to in the next chapter.

•	 Update operations, especially INSERT, also have the potential to run faster than before, because they might

be able to use ield values that already exist (even ones that aren’t “logically deleted”—see Chapter 6),

efectively sharing those values with other records. For example, consider what happens if the user tries to

insert a part tuple for part P7, with part name Nut, color Red, weight 18.0, city London. Note: he update

algorithms described in Chapter 6 clearly need some revision if they’re to work with a condensed version of

the Field Values Table; however, it’s not worth getting into details of those revisions here.

•	 In the introduction to this chapter, I said that condensed columns constitute a particular kind of data

compression. hat’s true, of course, but I want to point out that it’s a kind of compression not found—

indeed, not really possible—in conventional approaches to relational implementation, precisely because of

the direct-image nature of those conventional approaches. Indeed, the kind of compression we’re talking

about isn’t really like any of the compression techniques described in Chapter 2; rather, it’s compression

on an individual ield-by-ield basis, and it’s made possible only by the fact that ield values and linkage

information are kept separate in the irst place. By contrast, conventional compression—compression on

the data as such, that is, as opposed to compression within some index—is typically done on the basis of

records, not ields (if it’s done at all).

•	 Following on from the previous point, I’d like to emphasize just how much compression is possible with

condensed columns. By way of an example, imagine a Department of Motor Vehicles relation representing

drivers’ licenses, with a tuple for every license issued in (say) the state of California, for a total of perhaps

20 million tuples. But there certainly aren’t 20 million diferent heights, or weights, or hair colors, or expiry

dates; in other words, the compression ratio might quite literally be of the order of a million or so to one.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

126

Condensed Columns

•	 Yet another advantage of condensed columns is as follows.2 With conventional direct-image

implementations, a trick that’s oten used to save storage space is to represent properties by coded values in

the database. For example, the property “part color” might be represented as integer values, according to the

mapping 1 = Red, 2 = Blue, and so on. But:

a) his trick implies the need for an additional user-level relation to represent the mapping;

b) It also implies that user-level requests are more complicated, because they require additional joins.

With condensed columns, however, the need for this coded-values trick disappears. As a consequence, time

and space requirements are both reduced, and user requests are simpler to formulate as well. (What’s more,

if the trick is used anyway—perhaps because the database has been migrated from some legacy system—the

code values still might not need to be physically stored. See Section 8.5 for further explanation of this point.)

•	 For completeness, I should note that a column doesn’t actually have to be sorted in order to be condensed—

the beneits that follow from eliminating redundancy would apply even without sorting. But sorting provides

so many additional beneits that it’s reasonable to assume that any column that’s condensed is sorted as

well, and I’ll make that assumption throughout what follows, barring explicit statements to the contrary. (In

practice, in fact, it’s hard to imagine a column being condensed but not sorted—in part because it’s probably

necessary to sort the column in order to do the condensing in the irst place.)

•	 Terminology: From this point forward, I’ll use the term “condensed Field Values Table” to mean any Field

Values Table in which there’s at least one column that’s condensed. In fact, I’ll use the term “Field Values

Table,” unqualiied, to refer to a condensed Field Values Table speciically (in other words, I’ll assume that all

Field Values Tables are condensed ones, barring explicit statements to the contrary).

Row Ranges

Back to the speciic example of Fig. 8.5. Of course, we can’t just replace (for example) the original three appearances

of the city name London by one such appearance, because we’d be losing information if we did. (he condensed CITY

column contains three values, but there are six parts. How would we know which part is in which city?) So we need to

keep some additional information that, in efect, allows us to reconstruct the original uncondensed Field Values Table

from its condensed counterpart. Note: I’m not saying we do actually want to reconstruct that uncondensed table; to do so

would undermine the whole point (or a large part of the point, anyway) of condensing in the irst place. I simply mean

this is a way to think about the matter—if we can reconstruct the uncondensed table, at least in principle, then clearly

no information has been lost.

One way to achieve the foregoing efect is to keep, alongside each ield value in each condensed column in the Field Values

Table, a speciication of the range of row numbers for rows in the uncondensed version of that table in which that value

originally appeared, as shown in Fig. 8.6.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

127

Condensed Columns

Fig. 8.6: Condensed version of the Field Values Table of Fig. 8.3, with row ranges

To see how the row ranges work, consider (arbitrarily) cell [3,4] in the Field Values Table of Fig. 8.6, which contains the

weight value 17.0. Alongside that weight value appears the row range “[4:5].” hat row range means that if the Field Values

Table were to be “uncondensed,” as it were, then the weight value 17.0 would appear—in the WEIGHT column, of course,

which is to say in column 4—in rows 4 to 5, inclusive, within that uncondensed table.

Incidentally, don’t confuse a speciication of the form [4:5] with one of the form [4,5]. he former (with a colon separator)

denotes a certain range of row numbers, as just explained; the latter (with a comma separator) is a subscript that identiies

a certain cell, at a certain row-and-column intersection.

as a

e
s

alna

oro

eal responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

as a

e
s

alna

oro

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work

International opportunities

�ree work placements

al Internationa

or�ree wo

alna

oro

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Go Faster!

128

Condensed Columns

Of course, the information represented by row ranges like those shown in Fig. 8.6 could be physically implemented in a

variety of diferent ways. One way would be to move those row ranges out into a separate table of their own, isomorphic

to the condensed Field Values Table. Another would be to give just the beginning or just the end of the range (I showed

both in the igure for clarity, but obviously we don’t need both). Another would be to replace each row range by a count

of the number of times the corresponding value appears in the uncondensed table (the count would be two in the case

of the weight value 17.0, for example). And so on.

here’s one more point I want to make regarding row ranges. Take another look at (for example) column 3, the COLOR

column, in the Field Values Table of Fig. 8.6. Clearly, that column speciies exactly (a) the set of COLOR values that

currently appear in the parts ile, together with (b) for each such value, the number of times that value appears in that

ile. In other words, the column can be regarded as a histogram, as shown in Fig. 8.7. In general, in fact, the overall

condensed Field Values Table, with its corresponding row ranges, can very usefully be thought of as a set of histograms,

one for each condensed column. One consequence of this fact is that queries that conceptually involve such histograms are

likely to perform well. By way of example, think how easy it is, given the histogram of Fig. 8.7, to answer the query “How

many parts are there of each color?” I’ll have more to say about such matters in Chapter 10 (especially in Section 10.5).

Fig. 8.7: Color histogram (based on Fig. 8.6)

To continue with the same point for a moment: If the Field Values Table can efectively be thought of as a set of histograms,

then the Record Reconstruction Table—as we already know from previous chapters—can efectively be thought of as a

set of permutations. For example, if we reconstruct the parts ile using column 3 of the Record Reconstruction Table of

Fig. 8.4, we’ll obtain a version of the ile that’s ordered by part color; in other words, we get what we might call a “COLOR

permutation” of that ile. hus, we can characterize the TR representation of any given set of data, informally, as a set of

histograms plus a set of permutations (of the data in question). Such histograms and permutations are, in essence, what

the TR representation is really all about.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

129

Condensed Columns

8.3 Implications for Record Reconstruction

Condensing the Field Values Table clearly destroys the one-to-one relationship between cells of that table and cells of

the Record Reconstruction Table. It follows that the record reconstruction algorithm we’ve been using up to this point

(described in Chapter 4, Section 4.4) won’t work any more. However, it’s easy enough to ix it up, as follows:

Consider cell [i,j] of the Record Reconstruction Table. Instead of going to cell [i,j] of the Field Values Table,

we go to cell [i',j] of that table, where cell [i',j] is that unique cell within column j of that table that contains a

row range that includes row i.

For example, consider cell [3,4] of the Record Reconstruction Table of Fig. 8.4, which appears (of course) in column 4—the

WEIGHT column—of that table. To ind the corresponding weight value in the Field Values Table of Fig. 8.6, we search

the WEIGHT column of that table, looking for the unique entry in that column that contains a row range that includes

row 3. From the igure, we see that the entry in question is cell [2,4] (the corresponding range of rows is [3:3]), and the

required weight value is 14.0. Exercise 11: Use the Record Reconstruction Table of Fig. 8.4, together with the condensed

Field Values Table of Fig. 8.6, to reconstruct the parts ile in its entirety. Start with column 5 in order to obtain the result

in ascending city name sequence.

However, there’s a problem. With the original uncondensed Field Values Table, when we were reconstructing a given

record, we could go directly from cell [i,j] of the Record Reconstruction Table to cell [i,j] of the Field Values Table. Now,

by contrast, we have to do a search through column j of this latter table in order to ind the relevant cell—the cell in

question being that unique cell [i',j] that contains a row range that includes row i—and searches mean overhead. I’ll ix

this problem in the section immediately following.

Note: Before we get to that next section, however, I should make it clear that the amount of overhead we’re talking about

here is actually not all that great. he reason is that the row ranges within any given Field Values Table column are in

ascending sequence (more precisely, they’re in ascending sequence by either their begin points or their end points), and

so the searches we have to do can at least be binary searches speciically. Expanding the Record Reconstruction Table in

the manner to be described in the next section can thus be thought of as yet another optional extra.

8.4 Expanding the Record Reconstruction Table

he solution to the search problem identiied toward the end of the previous section is essentially straightforward (indeed,

you might have already igured it out for yourself): We just expand the Record Reconstruction Table such that, if column

j of the Field Values Table is condensed, then each cell in column j of the Record Reconstruction Table now contains two

pointers instead of one, as follows.

•	 One of those pointers is (as always) the row number of the next row to be inspected within the Record

Reconstruction Table.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

130

Condensed Columns

•	 he other is the row number i' of the cell [i',j] of the Field Values Table that actually contains the required

ield value. In other words, it’s that unique row number i' such that, if the row of the Record Reconstruction

Table that we’re currently looking at is row i, then the row range in the Field Values Table cell [i',j] includes

that row number i.

Fig. 8.8 is a revised version of Fig. 8.4, showing what happens to the Record Reconstruction Table in our example if this

approach is adopted. Points to note:

•	 First, the P# column remains unchanged, because the P# column of the Field Values Table isn’t condensed.

•	 Second, in those columns that do include two row numbers instead of just one, it’s intuitively convenient to

show those two row numbers “the wrong way round” (or what some people might think is the wrong way

round, at any rate). hat is, the irst is the number of the desired row within the Field Values Table, while the

second is the number of the next row to be inspected within the Record Reconstruction Table. he reason

for this switch will, I think, become obvious if you try to use this expanded Record Reconstruction Table to

reconstruct records of the parts ile—which (as I’m sure you’ve already guessed) I’m going to ask you to do

in just a moment.

Fig. 8.8: Expanded version of the Record Reconstruction Table of Fig. 8.4

By way of example, consider cell [2,4], which contains the entry 1■6 (note the “■” separator):

•	 he 6 tells us, as usual, that the next cell to inspect in the Record Reconstruction Table is in the sixth row; in

other words, that next Record Reconstruction Table cell is cell [6,5].

•	 By contrast, the 1 tells us that the cell in the Field Values Table that contains the ield value corresponding to

this cell [2,4] of the Record Reconstruction Table is in the irst row; in other words, that Field Values Table

cell is cell [1,4], which contains the weight value 12.0.

Exercise 12: Use the Record Reconstruction Table of Fig. 8.8, together with the condensed Field Values Table of Fig. 8.6,

to reconstruct the parts ile in its entirety. Again, start with column 5 to obtain the result in ascending city name sequence.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

131

Condensed Columns

As you can see from the foregoing example, the record reconstruction process is just as fast as it was before (as fast, that

is, as it was before we condensed the Field Values Table in the irst place). Of course, the Record Reconstruction Table is

now bigger than it was before ... Whether it’s worth paying this price will depend on the beneit we obtain from speeding

up the reconstruction process (it might be worth it in main memory but not on disk, for example).

Incidentally, notice that the row ranges in the Field Values Table aren’t used or needed in the record reconstruction process,

once the expanded Record Reconstruction Table has been built. However, they’re still useful, and indeed important. By

way of illustration, suppose cell c in the Field Values Table contains the row range [i1:i2]. hen there must be precisely

(i2-i1)+1 cells in the Record Reconstruction Table that contain a pointer to cell c. For example, cell [3,5] of the Field

Values Table contains the row range [5:6], and so it follows that there are precisely (6‑5)+1 = two cells in the Record

Reconstruction Table—namely, cells [5,5] and [6,5]—that include a pointer to cell [3,5] of the Field Values Table. In other

words, the row ranges efectively tell us how many tuples in the original user relation contain a given value for a given

attribute. As I mentioned at the end of Section 8.2 (when I was discussing histograms), the usefulness of this kind of

information in responding to certain kinds of queries—for example, “How many parts are there in Paris?”—should be

obvious. See Chapter 10 for further discussion.

Row ranges also turn out to be extremely important in connection with join operations, as we’ll see in Chapters 9 and

10 (in Section 10.6 in particular).

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Go Faster!

132

Condensed Columns

Note: As you’ve probably come to expect by now, the expanded Record Reconstruction Table (like the condensed Field

Values Table) can be physically implemented in many diferent ways. For example, the new pointers—the ones that point

into the condensed Field Values Table—might be moved out into a separate table of their own, isomorphic to the Record

Reconstruction Table (at least, isomorphic to those columns of that table that correspond to condensed columns in the

Field Values Table). Other physical implementations are also possible (see reference [63] for more speciics).

A inal point: Since I said in Section 8.2 that from this point forward I’m going to take the unqualiied term “Field Values

Table” to mean, speciically, a condensed version of that table, it makes sense to take the unqualiied term “Record

Reconstruction Table” to mean a correspondingly expanded version of that table, and so I will (barring explicit statements

to the contrary in both cases, of course).

8.5 Further Space-Saving Techniques

We’ve seen that (among other things) condensed columns are a technique for saving storage space. In this inal section

of the chapter, I want to take a quick look at a few other space-saving techniques that can be applied in the context of the

TR model. Although the techniques in question have little or nothing to do with condensed columns as such, I think this

chapter is the best place to cover them nonetheless.

he basic point is that some kinds of information can be represented just as well (if not better) implicitly instead of

explicitly. For example, suppose some user relation R has an attribute A whose values are precisely the integers from 1 to

M, where M is the number of tuples. Let F be a ile corresponding to R, with ields having the same names as the attributes

of R. hen, no matter which (arbitrary) record ordering we choose for F—that is, no matter in what order the integers

in ield A actually appear in ile F—column A of the Field Values Table will necessarily contain the integers 1 to M in

sorted order. In other words, every A value in that table will be identical to the row number of the row that contains it,

and there’s therefore no point in having a column for A in the Field Values Table at all. Note: his particular idea might

be useful in connection with system-generated key values [40].

Here are a few more examples of situations—certain aspects of which have already been touched on in passing—in which

some space saving might possibly be realized:

•	 Let A be a ield whose ith value (where i is the position of the value in question within the corresponding

column of the Field Values Table) is computed as some function f(i) of i. Suppose further that the function

f is such that, whenever i1 < i2, then f(i1) < f(i2). (A simple example of such a function is “multiply i by k,”

where k is some positive constant.) hen, again, ield A needs no Field Values Table column at all. Note: he

“integers 1 to M” example discussed above is a special case of this possibility (the function f in that example

is the identity function, of course).

•	 Let A be a ield whose values are all distinct. Assuming that ield A does have a column in the Field Values

Table (that is, we’re not dealing with one of the cases already discussed above), then at least that Field Values

Table column needs no associated row ranges (as we’ve already seen in the case of, for example, column P#

in Fig. 8.6).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

133

Condensed Columns

•	 Again let A be a ield whose values are all distinct. If the values of A are sorted into order, it will oten be

the case that the result consists of a series of runs or sequences with no gaps in them, separated by gaps of

arbitrary size. Here’s a simple example:

1,2,3,4,5 9,10,11,12 16,17,18,19,20,21,22,23,24 35,36,37,38

In such a situation, it might well be better if the relevant column of the Field Values Table contains just range

information, as here:

[1:5] [9:12] [16:24] [35:38]

(Please understand that the ranges shown are ranges of ield values, not row ranges as previously discussed.)

Alternatively, since there’ll be one fewer of them, we might choose to represent the gaps instead of the values:

[6:8] [13:15] [25:34]

his technique is called straight-line encoding.

Other space-saving possibilities are described in reference [63]. In particular, a variety of more conventional compression

techniques can be applied to the Field Values Table or the Record Reconstruction Table or both. I’d just like to mention

one example of such compression here; it applies primarily to the Field Values Table.3 he basic point is that, since the

let-to-right column order within that table has no signiicance at the user level, those columns can appear in any order

internally. In particular, they can be rearranged in such a way as to make the best use of boundary alignment requirements

(if any) at the physical storage level. For example, suppose the Field Values Table has eight columns named A, B, C, D,

E, F, G, H; suppose further that columns B, D, F, and H each have a column width of one word (four bytes) and require

word alignment, while columns A, C, E, and G each have a column width of one byte and require only byte alignment.

hen storing the table in let-to-right column order A, B, C, D, E, F, G, H would mean that each row occupies a total of

32 bytes, while storing it in let-to-right column order A, C, E, G, B, D, F, H would mean that each row occupies only 20

bytes (a 37.5 percent reduction).

Endnotes

1. his relation is taken from the same running example as the suppliers and shipments relations in previous

chapters (see reference [32] and elsewhere)—except that, for the sake of an example in Chapter 10, I’ve taken

the liberty of moving part P3 from Rome to Oslo.

2. hanks to Tom Sawyer for pointing this one out.

3. On the other hand, it does tacitly assume that the table is stored row-wise, which we saw in Chapter 6 is

probably not the case. It might perhaps make sense when reading the Field Values Table of the disk into

memory.

http://bookboon.com/

